It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
ML/DL techniques have shown their power in the improvement of several studies and tasks in HEP, especially in physics analysis. Our approach has been to take a number of the ML/DL tools provided by several open-source platforms and apply them to several classification problems, for instance, to the tt¯ resonance extraction in the LHC experiments. Gradient-boosting Trees, Random Forest, Artificial Neural Networks (ANN), etc. have been used and optimized by means of adjusting several hyperparameters to control overfitting. On top of this, data simulation with traditional models is computationally very demanding, making the use of generative models an alternative for generating simulated Monte Carlo events with similar quality at a lower computational cost. This could help to produce more simulated data statistics available for better sensitivity and more accurate assessment of systematic errors in potential Physics Beyond Standard Model discoveries. In this work, we study the use of generative models based on Deep Learning as faster Monte Carlo event generators in the LHC context, reducing the time and energy cost of currently used methods. In particular, we focus on different configurations of Variational Autoencoders, taking as a starting point the well-known β-VAE and proposing the α-VAE as a new and simpler VAE architecture that improves the results in some experiments. Considerations will be made about the reliability of these simulated data when they are produced with very high statistics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer