Abstract
Background
Mammography alone is an ineffective method for breast cancer surveillance and diagnosing cancer recurrence. The aim was to evaluate the ability of artificial intelligence (AI) to read digital mammograms as an additive tool to exclude recurrence in the operative bed of known breast cancer patients following the different surgical procedures.
Methods
We used a retrospective cohort study of post-surgery mammograms (n = 577). Imaging was performed within 6 months after the surgery or more. The AI solution used to read mammograms (AI-MMG) provided a targeted heat map of the operative bed, which was supported by a decision likelihood score percentage of cancer recurrence. The reference for suspicious or malignant-looking abnormalities (n = 62, 12.3%) was diagnosed by biopsy. A clear operative bed and benign-looking changes (n = 442) were confirmed by ultrasound characterization patterns and one year of intermittent follow-up.
Results
The AI scoring percentage for a clear operative bed ranged between 0 and 26%, with a mean of 15% ± 5.4%. Operative bed benign changes ranged from 10 to 88%, with a mean of 48.2% ± 21.2%, while malignancy recurrence ranged from 65 to 99%, with an average of 87.7% ± 10.5%. The “ROC: Receiver Operating Characteristic” curve for AI to predict cancer in the surgical bed on mammograms was 0.906. The optimum cutoff value to distinguish between benign postoperative alterations and malignancy recurrence was 56.5% (95%, CI 0.824–1.060, p value < 0.001).
Excellent agreement between AI-MMG and pathology or ultrasound results was observed, and Kappa was 0.894, p value < 0.001.
Conclusions
The use of artificial intelligence has enhanced the diagnostic performance of the postoperative mammograms to rule out recurrent malignancies in breast cancer surveillance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
; Azzam, Heba 1 ; El-Assaly, Hany 2 1 Kasr ElAiny Hospital, Cairo University, Women’s Imaging Unit, Radiology Department, Manial, Cairo, Egypt (GRID:grid.7776.1) (ISNI:0000 0004 0639 9286); Baheya Foundation for Early Breast Cancer Detection and Treatment, ElAhram, Cairo, Egypt (GRID:grid.7776.1)
2 Kasr El Ainy Hospital, Cairo University, Manial, Cairo, Egypt (GRID:grid.7776.1) (ISNI:0000 0004 0639 9286)





