Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Understanding soil loss pathways in karst regions is crucial for erosion control. Combining high-density measurements of grid points with runoff plot monitoring, we attempt to use a new indirect method to study the characteristics of soil loss in karst rocky desertification areas of Salaxi Town, Guizhou province. One cycle year monitoring data of 12640 grid points were applied in the soil loss analysis. This study identifies underground leakage as the primary pathway of soil loss, with an mean soil leakage of 21.51 kg in potential areas, accounting for 83.12%, and an average leakage of 22.69 kg in in mild karst rocky desertification areas accounting for 81.48%. Mixed vegetation types (forest, shrub, and grass) were better at preventing surface soil loss but increased underground leakage compared to single vegetation types. The rainy season significantly influences soil erosion, accounting for 67.88% of total loss, with slight variations among different karst rocky desertification grades and vegetation types. Mean underground leakage rates during the rainy and dry seasons are 63.34% and 36.66%, respectively. Although this method still has certain limitations, it plays a positive role in revealing the mechanism of soil erosion processes in karst regions.

Details

Title
A New Attempt to Estimate Underground Soil Leakage through High-Density, Fixed-Point Monitoring in a Typical Karst Rocky Desertification Region
Author
Zhu, Dayun 1 ; Yang, Qian 1 ; Xiao, Hua 1 ; Zhao, Yingshan 1 

 School of Karst Science, Guizhou Normal University, Guiyang 550001, China; [email protected] (Q.Y.); [email protected] (H.X.); [email protected] (Y.Z.); State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China 
First page
718
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20770472
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059243700
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.