Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This review delves into using natural antimicrobials in the dairy industry and examines various sources of these compounds, including microbial, plant, and animal sources. It discusses the mechanisms by which they inhibit microbial growth, for example, by binding to the cell wall’s precursor molecule of the target microorganism, consequently inhibiting its biosynthesis, and interfering in the molecule transport mechanism, leading to cell death. In general, they prove to be effective against the main pathogens and spoilage found in food, such as Escherichia coli, Staphylococcus aureus, Bacillus spp., Salmonella spp., mold, and yeast. Moreover, this review explores encapsulation technology as a promising approach for increasing the viability of natural antimicrobials against unfavorable conditions such as pH, temperature, and oxygen exposure. Finally, this review examines the benefits and challenges of using natural antimicrobials in dairy products. While natural antimicrobials offer several advantages, including improved safety, quality, and sensory properties of dairy products, it is crucial to be aware of the challenges associated with their use, such as potential allergenicity, regulatory requirements, and consumer perception. This review concludes by emphasizing the need for further research to identify and develop effective and safe natural antimicrobials for the dairy industry to ensure the quality and safety of dairy products for consumers.

Details

Title
Natural Antimicrobials in Dairy Products: Benefits, Challenges, and Future Trends
Author
Maria Eduarda Marques Soutelino 1   VIAFID ORCID Logo  ; Adriana Cristina de Oliveira Silva 1 ; Ramon da Silva Rocha 2   VIAFID ORCID Logo 

 Department of Food Technology (MTA), College of Veterinary, Fluminense Federal University (UFF), 24230-340 Niterói, Brazil; [email protected] (M.E.M.S.); [email protected] (A.C.d.O.S.) 
 Food Engineering Department (ZEA), College of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), 13635-900 Pirassununga, Brazil 
First page
415
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20796382
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059251752
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.