Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Current orbit uncertainty propagation (OUP) and orbit determination (OD) methods suffer from drawbacks related to high computational burden, limiting their applications in deep space missions. To this end, this paper proposes a multivariate attention-based method for efficient OUP and OD of Earth–Jupiter transfer. First, a neural network-based OD framework is utilized, in which the orbit propagation process in a traditional unscented transform (UT) and unscented Kalman filter (UKF) is replaced by the neural network. Then, the sample structure of training the neural network for the Earth–Jupiter transfer is discussed and designed. In addition, a method for efficiently generating a large number of samples for the Earth–Jupiter transfer is presented. Next, a multivariate attention-based neural network (MANN) is designed for orbit propagation, which shows better capacity in terms of accuracy and generalization than the deep neural network. Finally, the proposed method is successfully applied to solve the OD problem in an Earth–Jupiter transfer. Simulations show that the proposed method can obtain a similar estimation to the UKF while saving more than 90% of the computational cost.

Details

Title
Multivariate Attention-Based Orbit Uncertainty Propagation and Orbit Determination Method for Earth–Jupiter Transfer
Author
Zhang, Zhe 1 ; Shi, Yishuai 2 ; Han, Hongwei 3 

 School of Aerospace Engineering, Beijing Institute of Technology, Beijng 100081, China; Peng Cheng Laboratory, Department of Mathematics and Theories, Shenzhen 518000, China; Deep Space Exploration Labortory, Beijing 100089, China 
 School of Aerospace Engineering, Beijing Institute of Technology, Beijng 100081, China 
 School of Aerospace Engineering, Beijing Institute of Technology, Beijng 100081, China; Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China 
First page
4263
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059264745
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.