Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Only a few halophilic archaea producing carboxylesterases have been reported. The limited research on biocatalytic characteristics of archaeal esterases is primarily due to their very low production in native organisms. A gene encoding carboxylesterase from Halobacterium salinarum NRC-1 was cloned and successfully expressed in Haloferax volcanii. The recombinant carboxylesterase (rHsEst) was purified by affinity chromatography with a yield of 81%, and its molecular weight was estimated by SDS-PAGE (33 kDa). The best kinetic parameters of rHsEst were achieved using p-nitrophenyl valerate as substrate (KM = 78 µM, kcat = 0.67 s−1). rHsEst exhibited great stability to most metal ions tested and some solvents (diethyl ether, n-hexane, n-heptane). Purified rHsEst was effectively immobilized using Celite 545. Esterase activities of rHsEst were confirmed by substrate specificity studies. The presence of a serine residue in rHsEst active site was revealed through inhibition with PMSF. The pH for optimal activity of free rHsEst was 8, while for immobilized rHsEst, maximal activity was at a pH range between 8 to 10. Immobilization of rHsEst increased its thermostability, halophilicity and protection against inhibitors such as EDTA, BME and PMSF. Remarkably, immobilized rHsEst was stable and active in NaCl concentrations as high as 5M. These biochemical characteristics of immobilized rHsEst reveal its potential as a biocatalyst for industrial applications.

Details

Title
Cloning, Expression, Characterization and Immobilization of a Recombinant Carboxylesterase from the Halophilic Archaeon, Halobacterium salinarum NCR-1
Author
Nestor David Ortega-de la Rosa 1 ; Romero-Borbón, Evelyn 2   VIAFID ORCID Logo  ; Rodríguez, Jorge Alberto 3   VIAFID ORCID Logo  ; Camacho-Ruiz, Angeles 4   VIAFID ORCID Logo  ; Córdova, Jesús 2   VIAFID ORCID Logo 

 Centro Universitario de Tlajomulco, Departamento de Ingeniería Biología, Sintética y de Materiales, Universidad de Guadalajara, Carretera Tlajomulco-Santa Fé Km. 3.5 No.595, Lomas de Tejeda, Tlajomulco de Zúñiga 45641, Mexico; [email protected] 
 Centro Universitario de Ciencias Exactas e Ingenierías, Departamento de Química, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Col. Olímpica, Guadalajara 44430, Mexico; [email protected] 
 Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C., Camino el Arenero 1227, El Bajío del arenal, Zapopan 45019, Mexico; [email protected] 
 Centro Universitario del Norte, Departamento de Fundamentos del Conocimiento, Universidad de Guadalajara, Carretera Federal Km. 191 No. 23, Col. Santiago Tlaltelolco, Colotlán 46200, Mexico; [email protected] 
First page
534
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2218273X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059401681
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.