Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Abdominal imaging of autosomal dominant polycystic kidney disease (ADPKD) has historically focused on detecting complications such as cyst rupture, cyst infection, obstructing renal calculi, and pyelonephritis; discriminating complex cysts from renal cell carcinoma; and identifying sources of abdominal pain. Many imaging features of ADPKD are incompletely evaluated or not deemed to be clinically significant, and because of this, treatment options are limited. However, total kidney volume (TKV) measurement has become important for assessing the risk of disease progression (i.e., Mayo Imaging Classification) and predicting tolvaptan treatment’s efficacy. Deep learning for segmenting the kidneys has improved these measurements’ speed, accuracy, and reproducibility. Deep learning models can also segment other organs and tissues, extracting additional biomarkers to characterize the extent to which extrarenal manifestations complicate ADPKD. In this concept paper, we demonstrate how deep learning may be applied to measure the TKV and how it can be extended to measure additional features of this disease.

Details

Title
A Primer for Utilizing Deep Learning and Abdominal MRI Imaging Features to Monitor Autosomal Dominant Polycystic Kidney Disease Progression
Author
Zhu, Chenglin 1   VIAFID ORCID Logo  ; He, Xinzi 2 ; Blumenfeld, Jon D 3 ; Hu, Zhongxiu 1   VIAFID ORCID Logo  ; Hreedi Dev 1 ; Sattar, Usama 1   VIAFID ORCID Logo  ; Bazojoo, Vahid 1 ; Sharbatdaran, Arman 1   VIAFID ORCID Logo  ; Aspal, Mohit 1 ; Romano, Dominick 1 ; Teichman, Kurt 1 ; Hui Yi Ng He 1 ; Wang, Yin 1 ; Andrea Soto Figueroa 1 ; Weiss, Erin 1   VIAFID ORCID Logo  ; Prince, Anna G 1 ; Chevalier, James M 3   VIAFID ORCID Logo  ; Shimonov, Daniil 3   VIAFID ORCID Logo  ; Moghadam, Mina C 1 ; Sabuncu, Mert 4 ; Prince, Martin R 5   VIAFID ORCID Logo 

 Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; [email protected] (C.Z.); [email protected] (X.H.); [email protected] (Z.H.); [email protected] (H.D.); [email protected] (U.S.); [email protected] (V.B.); [email protected] (A.S.); [email protected] (M.A.); [email protected] (D.R.); [email protected] (K.T.); [email protected] (H.Y.N.H.); [email protected] (Y.W.); [email protected] (A.S.F.); [email protected] (E.W.); [email protected] (A.G.P.); [email protected] (M.C.M.); 
 Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; [email protected] (C.Z.); [email protected] (X.H.); [email protected] (Z.H.); [email protected] (H.D.); [email protected] (U.S.); [email protected] (V.B.); [email protected] (A.S.); [email protected] (M.A.); [email protected] (D.R.); [email protected] (K.T.); [email protected] (H.Y.N.H.); [email protected] (Y.W.); [email protected] (A.S.F.); [email protected] (E.W.); [email protected] (A.G.P.); [email protected] (M.C.M.); ; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Cornell Tech, Cornell University, Ithaca, NY 10044, USA 
 The Rogosin Institute, New York, NY 10021, USA; [email protected] (J.D.B.); [email protected] (J.M.C.); [email protected] (D.S.); Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA 
 Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; [email protected] (C.Z.); [email protected] (X.H.); [email protected] (Z.H.); [email protected] (H.D.); [email protected] (U.S.); [email protected] (V.B.); [email protected] (A.S.); [email protected] (M.A.); [email protected] (D.R.); [email protected] (K.T.); [email protected] (H.Y.N.H.); [email protected] (Y.W.); [email protected] (A.S.F.); [email protected] (E.W.); [email protected] (A.G.P.); [email protected] (M.C.M.); ; Cornell Tech, Cornell University, Ithaca, NY 10044, USA; School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA 
 Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; [email protected] (C.Z.); [email protected] (X.H.); [email protected] (Z.H.); [email protected] (H.D.); [email protected] (U.S.); [email protected] (V.B.); [email protected] (A.S.); [email protected] (M.A.); [email protected] (D.R.); [email protected] (K.T.); [email protected] (H.Y.N.H.); [email protected] (Y.W.); [email protected] (A.S.F.); [email protected] (E.W.); [email protected] (A.G.P.); [email protected] (M.C.M.); ; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA 
First page
1133
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22279059
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059404280
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.