Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper studied favorable low-temperature plasma (LTP) surface treatment modes for Carbon Fiber Reinforced Polymer (CFRP)/Al7075 single-lap joints using complex experimental methods and analyzed the failure modes of the joints. The surface physicochemical properties of CFRP after LTP surface treatment were characterized using scanning electron microscopy (SEM), contact angle tests, and X-ray photoelectron spectroscopy (XPS). The influence mechanism of LTP surface treatment on the bonding properties of CFRP/Al7075 single-lap Joint was studied. The results of the complex experiment and range analysis showed that the favorable LTP surface treatment parameters were a speed of 10 mm/s, a distance of 10 mm, and three repeat scans. At these parameters, the shear strength of the joints reached 30.76 MPa, a 102.8% improvement compared to the untreated group. The failure mode of the joints shifted from interface failure to substrate failure. After low-temperature plasma surface treatment with favorable parameters, the CFRP surface exhibited gully like textures, which enhanced the mechanical interlocking between the CFRP surface and the adhesive. Additionally, the surface free energy of CFRP significantly increased, reaching a maximum of 78.77 mJ/m2. XPS results demonstrated that the low-temperature plasma surface treatment led to a significant increase in the content of oxygen-containing functional groups, such as C-O, C=O, and O-C=O, on the CFRP surface.

Details

Title
Optimization and Mechanism Study of Bonding Properties of CFRP/Al7075 Single-Lap Joints by Low-Temperature Plasma Surface Treatment
Author
Wen, Liwei; Wang, Ruozhou; Xu, Entao
First page
541
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059416625
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.