Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recently, a large-scale gas reservoir was discovered in granitic buried hills of the Songnan Low Uplift in the Qiongdongnan Basin. However, the strong heterogeneity of granite reservoirs limits further exploration and evaluation. Based on observations of sixty core samples and sixty thin sections, mineral composition, zircon dating, apatite fission tracks, physical properties, image logs, outcrop surveys and seismic interpretations, the characteristics of granite weathering crust of the Songnan Low Uplift are analyzed, and its controlling factors and evolution process are evaluated. The results show that weathered granite in the study area can be divided into several zones, from top to bottom: eluvium–slope zone, sandy zone, weathered fracture zone and horizontal undercurrent vuggy zone. The reservoirs in the eluvium–slope zone are dominated by microfissures and intergranular dissolution pores and have an average porosity of 4.68% and permeability of 2.34 md; the reservoirs in the sandy zone are composed of intergranular and intragranular dissolution pores and have an average porosity of 11.46% and permeability of 4.99 md; the reservoirs in the weathered fracture zone consist of various fractures and have an average porosity of 3.91% and permeability of 2.5 md; the reservoirs in the horizontal undercurrent vuggy zone are subhorizontal fractures and vugs and have an average porosity of 2.7% and permeability of 0.23 md. The development of granite reservoirs is jointly influenced by petrology and minerals, long-term exposure in a warm humid paleoclimate, faults, diverse topographies and shallow buried depth. Based on the above, our study establishes a development model of weathering crust and suggests that only the gentle slope and platform remain strongly weathered zones. After undergoing a complex evolution process of formation–destruction/denudation–regeneration–preservation, the current weathering crust of the Songnan Low Uplift is finally established. The results of this study have important theoretical and application value for the hydrocarbon exploration of buried hills in the Qiongdongnan Basin and provide a reference example for other granite reservoirs worldwide.

Details

Title
Characteristics and Genetic Mechanism of Granite Weathering Crust of Songnan Low Uplift, Qiongdongnan Basin, South China Sea
Author
Li, Zhiyu 1 ; Guo, Jianhua 1 ; Wu, Shiqing 1 

 Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Central South University, Changsha 410083, China; [email protected] (Z.L.); [email protected] (J.G.); Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration, Changsha 410083, China; School of Geoscience and Info-Physics, Central South University, Changsha 410083, China 
First page
512
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059658839
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.