Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents an intelligent system for the dynamic estimation of sheep body weight (BW). The methodology used to estimate body weight is based on measuring seven biometric parameters: height at withers, rump height, body length, body diagonal length, total body length, semicircumference of the abdomen, and semicircumference of the girth. A biometric parameter acquisition system was developed using a Kinect as a sensor. The results were contrasted with measurements obtained manually with a flexometer. The comparison gives an average root mean square error (RMSE) of 9.91 and a mean R2 of 0.81. Subsequently, the parameters were used as input in a back-propagation artificial neural network. Performance tests were performed with different combinations to make the best choice of architecture. In this way, an intelligent body weight estimation system was obtained from biometric parameters, with a 5.8% RMSE in the weight estimations for the best architecture. This approach represents an innovative, feasible, and economical alternative to contribute to decision-making in livestock production systems.

Details

Title
Neural Network-Based Body Weight Prediction in Pelibuey Sheep through Biometric Measurements
Author
Chay-Canul, Alfonso J 1   VIAFID ORCID Logo  ; Camacho-Pérez, Enrique 2   VIAFID ORCID Logo  ; Casanova-Lugo, Fernando 3   VIAFID ORCID Logo  ; Rodríguez-Abreo, Omar 4   VIAFID ORCID Logo  ; Cruz-Fernández, Mayra 4   VIAFID ORCID Logo  ; Rodríguez-Reséndiz, Juvenal 5   VIAFID ORCID Logo 

 División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa 86280, Tabasco, Mexico; [email protected] 
 Facultad de Ingeniería, Universidad Autonoma de Yucatán, Mérida 97302, Yucatán, Mexico; [email protected]; Red de Investigación OAC Optimización, Automatización y Control, El Marques 76240, Querétaro, Mexico 
 Instituto Tecnológico de la Zona Maya, Tecnológico Nacional de México, Othón P. Blanco 77960, Quintana Roo, Mexico; [email protected] 
 Red de Investigación OAC Optimización, Automatización y Control, El Marques 76240, Querétaro, Mexico; División de Tecnologías Industriales, Universidad Politécnica de Querétaro, El Marques 76240, Querétaro, Mexico 
 Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Querétaro, Mexico; [email protected] 
First page
59
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22277080
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059707775
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.