Full Text

Turn on search term navigation

© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

WiFi Channel State Information (CSI)-based human action recognition using convolutional neural networks (CNNs) has emerged as a promising approach for non-intrusive activity monitoring. However, the integrity and reliability of the reported performance metrics are susceptible to data leakage, wherein information from the test set inadvertently influences the training process, leading to inflated accuracy rates. In this paper, we conduct a critical analysis of a notable IEEE Sensors Journal study on WiFi CSI-based human action recognition, uncovering instances of data leakage resulting from the absence of subject-based data partitioning. Empirical investigation corroborates the lack of exclusivity of individuals across dataset partitions, underscoring the importance of rigorous data management practices. Furthermore, we demonstrate that employing data partitioning with respect to humans results in significantly lower precision rates than the reported 99.9% precision, highlighting the exaggerated nature of the original findings. Such inflated results could potentially discourage other researchers and impede progress in the field by fostering a sense of complacency.

Details

Title
Critical Analysis of Data Leakage in WiFi CSI-Based Human Action Recognition Using CNNs
Author
Varga, Domonkos  VIAFID ORCID Logo 
First page
3159
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3059711596
Copyright
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.