Abstract

By mimicking the neurons and synapses of the human brain and employing spiking neural networks on neuromorphic chips, neuromorphic computing offers a promising energy-efficient machine intelligence. How to borrow high-level brain dynamic mechanisms to help neuromorphic computing achieve energy advantages is a fundamental issue. This work presents an application-oriented algorithm-software-hardware co-designed neuromorphic system for this issue. First, we design and fabricate an asynchronous chip called “Speck”, a sensing-computing neuromorphic system on chip. With the low processor resting power of 0.42mW, Speck can satisfy the hardware requirements of dynamic computing: no-input consumes no energy. Second, we uncover the “dynamic imbalance” in spiking neural networks and develop an attention-based framework for achieving the algorithmic requirements of dynamic computing: varied inputs consume energy with large variance. Together, we demonstrate a neuromorphic system with real-time power as low as 0.70mW. This work exhibits the promising potentials of neuromorphic computing with its asynchronous event-driven, sparse, and dynamic nature.

Mimicking high-level abstraction of the brain to achieve energy advantages is a fundamental issue in neuromorphic computing. Here, the authors fabricate an asynchronous chip and demonstrate a high-accuracy neuromorphic system with power consumption of 0.7mW.

Details

Title
Spike-based dynamic computing with asynchronous sensing-computing neuromorphic chip
Author
Yao, Man 1   VIAFID ORCID Logo  ; Richter, Ole 2   VIAFID ORCID Logo  ; Zhao, Guangshe 3 ; Qiao, Ning 4 ; Xing, Yannan 5 ; Wang, Dingheng 6 ; Hu, Tianxiang 1 ; Fang, Wei 7   VIAFID ORCID Logo  ; Demirci, Tugba 8 ; De Marchi, Michele 8 ; Deng, Lei 9   VIAFID ORCID Logo  ; Yan, Tianyi 10   VIAFID ORCID Logo  ; Nielsen, Carsten 11 ; Sheik, Sadique 12 ; Wu, Chenxi 13 ; Tian, Yonghong 7   VIAFID ORCID Logo  ; Xu, Bo 1 ; Li, Guoqi 14 

 Chinese Academy of Sciences, Institute of Automation, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309) 
 SynSense AG Corporation, Zurich, Switzerland (GRID:grid.9227.e) 
 Xi’an Jiaotong University, School of Automation Science and Engineering, Xi’an, China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243) 
 SynSense AG Corporation, Zurich, Switzerland (GRID:grid.43169.39); SynSense Corporation, Chengdu, China (GRID:grid.43169.39) 
 SynSense Corporation, Chengdu, China (GRID:grid.43169.39) 
 Northwest Institute of Mechanical & Electrical Engineering, Xianyang, China (GRID:grid.507011.2) 
 Peking University, School of Computer Science, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319); Peng Cheng Laboratory, Shenzhen, China (GRID:grid.508161.b) (ISNI:0000 0005 0389 1328) 
 SynSense AG Corporation, Zurich, Switzerland (GRID:grid.508161.b) 
 Tsinghua University, Center for Brain-Inspired Computing, Department of Precision Instrument, Beijing, China (GRID:grid.12527.33) (ISNI:0000 0001 0662 3178) 
10  Beijing Institute of Technology, School of Life Science, Beijing, China (GRID:grid.43555.32) (ISNI:0000 0000 8841 6246) 
11  SynSense AG Corporation, Zurich, Switzerland (GRID:grid.43555.32); University of Zurich and ETH Zurich, Institute of Neuroinformatics, Zurich, Switzerland (GRID:grid.7400.3) (ISNI:0000 0004 1937 0650) 
12  SynSense AG Corporation, Zurich, Switzerland (GRID:grid.7400.3) 
13  SynSense AG Corporation, Zurich, Switzerland (GRID:grid.7400.3); University of Zurich and ETH Zurich, Institute of Neuroinformatics, Zurich, Switzerland (GRID:grid.7400.3) (ISNI:0000 0004 1937 0650) 
14  Chinese Academy of Sciences, Institute of Automation, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Beijing, China (GRID:grid.9227.e) 
Pages
4464
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3060075695
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.