Content area

Abstract

Human languages in the world, such as news or narratives, are structured around events. Focusing on these events allows Natural Language Processing (NLP) systems to better understand plots, infer motivations, consequences, and the dynamics of situations. Despite the rapidly evolving landscape of NLP technology, comprehending complex events, particularly those rarely encountered in training such as in niche domains or low-resource languages, remains a formidable challenge. This thesis explores methods to enhance NLP model generalizability for better adaptability to unfamiliar events and languages unseen during training.

My approach includes two main strategies: (1) Model Perspective: I propose a novel generation-based event extraction framework, largely different from typical solutions that make predictions by learning to classify input tokens. This new framework utilizes indirect supervision from natural language generation, leveraging large-scale unsupervised data without requiring additional training modules dependent on limited event-specific data. Hence, it facilitates the models’ ability on understanding general event concepts. I further explore advanced methods to extend this framework for cross-lingual adaptation and to utilize cross-domain robust resources effectively. (2) Data Perspective: I develop techniques to generate pseudo-training data broaden the training scope for event understanding models. This includes translating structured event labels into other languages with higher accuracy and fidelity, and synthesizing novel events for the existing knowledge base.

Overall, my work introduces a novel learning platform to the NLP community, emphasizing an innovative modeling paradigm and comprehensive data preparation to foster more generalized event understanding models.

Details

1010268
Business indexing term
Title
Towards Generalized Event Understanding in Text via Generative Models
Number of pages
174
Publication year
2024
Degree date
2024
School code
0208
Source
DAI-B 85/11(E), Dissertation Abstracts International
ISBN
9798382753140
Committee member
Ferrara, Emilio; O'Leary, Dan
University/institution
University of Southern California
Department
Computer Science
University location
United States -- California
Degree
Ph.D.
Source type
Dissertation or Thesis
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
31300335
ProQuest document ID
3060245289
Document URL
https://www.proquest.com/dissertations-theses/towards-generalized-event-understanding-text-via/docview/3060245289/se-2?accountid=208611
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Database
ProQuest One Academic