Abstract

We construct non-linear machine learning (ML) prediction models for systolic and diastolic blood pressure (SBP, DBP) using demographic and clinical variables and polygenic risk scores (PRSs). We developed a two-model ensemble, consisting of a baseline model, where prediction is based on demographic and clinical variables only, and a genetic model, where we also include PRSs. We evaluate the use of a linear versus a non-linear model at both the baseline and the genetic model levels and assess the improvement in performance when incorporating multiple PRSs. We report the ensemble model’s performance as percentage variance explained (PVE) on a held-out test dataset. A non-linear baseline model improved the PVEs from 28.1 to 30.1% (SBP) and 14.3% to 17.4% (DBP) compared with a linear baseline model. Including seven PRSs in the genetic model computed based on the largest available GWAS of SBP/DBP improved the genetic model PVE from 4.8 to 5.1% (SBP) and 4.7 to 5% (DBP) compared to using a single PRS. Adding additional 14 PRSs computed based on two independent GWASs further increased the genetic model PVE to 6.3% (SBP) and 5.7% (DBP). PVE differed across self-reported race/ethnicity groups, with primarily all non-White groups benefitting from the inclusion of additional PRSs. In summary, non-linear ML models improves BP prediction in models incorporating diverse populations.

Details

Title
Machine learning models for predicting blood pressure phenotypes by combining multiple polygenic risk scores
Author
Hrytsenko, Yana 1 ; Shea, Benjamin 2 ; Elgart, Michael 3 ; Kurniansyah, Nuzulul 4 ; Lyons, Genevieve 5 ; Morrison, Alanna C. 6 ; Carson, April P. 7 ; Haring, Bernhard 8 ; Mitchell, Braxton D. 9 ; Psaty, Bruce M. 10 ; Jaeger, Byron C. 11 ; Gu, C. Charles 12 ; Kooperberg, Charles 13 ; Levy, Daniel 14 ; Lloyd-Jones, Donald 15 ; Choi, Eunhee 16 ; Brody, Jennifer A. 17 ; Smith, Jennifer A. 18 ; Rotter, Jerome I. 19 ; Moll, Matthew 20 ; Fornage, Myriam 21 ; Simon, Noah 22 ; Castaldi, Peter 3 ; Casanova, Ramon 11 ; Chung, Ren-Hua 23 ; Kaplan, Robert 24 ; Loos, Ruth J. F. 25 ; Kardia, Sharon L. R. 26 ; Rich, Stephen S. 27 ; Redline, Susan 28 ; Kelly, Tanika 29 ; O’Connor, Timothy 30 ; Zhao, Wei 18 ; Kim, Wonji 31 ; Guo, Xiuqing 19 ; Ida Chen, Yii-Der 19 ; Sofer, Tamar 32 

 Brigham and Women’s Hospital, Department of Medicine, Boston, USA (GRID:grid.62560.37) (ISNI:0000 0004 0378 8294); Harvard Medical School, Department of Medicine, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X); Beth Israel Deaconess Medical Center, CardioVascular Institute (CVI), Boston, USA (GRID:grid.239395.7) (ISNI:0000 0000 9011 8547) 
 Beth Israel Deaconess Medical Center, CardioVascular Institute (CVI), Boston, USA (GRID:grid.239395.7) (ISNI:0000 0000 9011 8547) 
 Brigham and Women’s Hospital, Department of Medicine, Boston, USA (GRID:grid.62560.37) (ISNI:0000 0004 0378 8294); Harvard Medical School, Department of Medicine, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X) 
 Brigham and Women’s Hospital, Department of Medicine, Boston, USA (GRID:grid.62560.37) (ISNI:0000 0004 0378 8294) 
 Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X) 
 The University of Texas Health Science Center at Houston, Department of Epidemiology, School of Public Health, Human Genetics Center, Houston, USA (GRID:grid.267308.8) (ISNI:0000 0000 9206 2401) 
 University of Mississippi Medical Center, Department of Medicine, Jackson, USA (GRID:grid.410721.1) (ISNI:0000 0004 1937 0407) 
 Albert Einstein College of Medicine, Department of Epidemiology & Population Health, Bronx, USA (GRID:grid.251993.5) (ISNI:0000 0001 2179 1997); Saarland University, Department of Medicine III, Homburg, Germany (GRID:grid.11749.3a) (ISNI:0000 0001 2167 7588) 
 University of Maryland School of Medicine, Department of Medicine, Baltimore, USA (GRID:grid.411024.2) (ISNI:0000 0001 2175 4264) 
10  University of Washington, Department of Medicine, Seattle, USA (GRID:grid.34477.33) (ISNI:0000 0001 2298 6657); University of Washington, Department of Epidemiology, Seattle, USA (GRID:grid.34477.33) (ISNI:0000 0001 2298 6657); University of Washington, Cardiovascular Health Research Unit, Seattle, USA (GRID:grid.34477.33) (ISNI:0000 0001 2298 6657); University of Washington, Health Systems and Population Health, Seattle, USA (GRID:grid.34477.33) (ISNI:0000 0001 2298 6657) 
11  Wake Forest University School of Medicine, Department of Biostatistics and Data Science, Winston-Salem, USA (GRID:grid.241167.7) (ISNI:0000 0001 2185 3318) 
12  Washington University, The Center for Biostatistics and Data Science, St. Louis, USA (GRID:grid.34477.33) (ISNI:0000 0001 2298 6657) 
13  Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, USA (GRID:grid.270240.3) (ISNI:0000 0001 2180 1622) 
14  The Population Sciences Branch of the National Heart, Lung and Blood Institute, Bethesda, USA (GRID:grid.279885.9) (ISNI:0000 0001 2293 4638); The Framingham Heart Study, Framingham, USA (GRID:grid.510954.c) (ISNI:0000 0004 0444 3861) 
15  Northwestern University, Department of Preventive Medicine, Chicago, USA (GRID:grid.16753.36) (ISNI:0000 0001 2299 3507) 
16  Columbia University Irving Medical Center, Columbia Hypertension Laboratory, Department of Medicine, New York, USA (GRID:grid.239585.0) (ISNI:0000 0001 2285 2675) 
17  University of Washington, Department of Medicine, Seattle, USA (GRID:grid.34477.33) (ISNI:0000 0001 2298 6657); University of Washington, Cardiovascular Health Research Unit, Seattle, USA (GRID:grid.34477.33) (ISNI:0000 0001 2298 6657) 
18  University of Michigan, Department of Epidemiology, School of Public Health, Ann Arbor, USA (GRID:grid.214458.e) (ISNI:0000 0004 1936 7347); University of Michigan, Survey Research Center, Institute for Social Research, Ann Arbor, USA (GRID:grid.214458.e) (ISNI:0000 0004 1936 7347) 
19  The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Torrance, USA (GRID:grid.279946.7) (ISNI:0000 0004 0521 0744) 
20  Brigham and Women’s Hospital, Department of Medicine, Boston, USA (GRID:grid.62560.37) (ISNI:0000 0004 0378 8294); Harvard Medical School, Department of Medicine, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X); VA Boston Healthcare System, West Roxbury, USA (GRID:grid.410370.1) (ISNI:0000 0004 4657 1992); Brigham and Women’s Hospital, Channing Division of Network Medicine, Department of Medicine, Boston, USA (GRID:grid.62560.37) (ISNI:0000 0004 0378 8294) 
21  The University of Texas Health Science Center at Houston, Department of Epidemiology, School of Public Health, Human Genetics Center, Houston, USA (GRID:grid.267308.8) (ISNI:0000 0000 9206 2401); University of Texas Health Science Center at Houston, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, USA (GRID:grid.267308.8) (ISNI:0000 0000 9206 2401) 
22  University of Washington, Department of Biostatistics, School of Public Health, Seattle, USA (GRID:grid.34477.33) (ISNI:0000 0001 2298 6657) 
23  National Health Research Institutes, Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, Taipei City, Taiwan (GRID:grid.59784.37) (ISNI:0000 0004 0622 9172) 
24  Albert Einstein College of Medicine, Department of Epidemiology & Population Health, Bronx, USA (GRID:grid.251993.5) (ISNI:0000 0001 2179 1997); Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, USA (GRID:grid.270240.3) (ISNI:0000 0001 2180 1622) 
25  Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, USA (GRID:grid.59734.3c) (ISNI:0000 0001 0670 2351); University of Copenhagen, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty for Health and Medical Sciences, Copenhagen, Denmark (GRID:grid.5254.6) (ISNI:0000 0001 0674 042X) 
26  University of Michigan, Department of Epidemiology, School of Public Health, Ann Arbor, USA (GRID:grid.214458.e) (ISNI:0000 0004 1936 7347) 
27  University of Virginia School of Medicine, Center for Public Health Genomics, Charlottesville, USA (GRID:grid.27755.32) (ISNI:0000 0000 9136 933X) 
28  Brigham and Women’s Hospital, Department of Medicine, Boston, USA (GRID:grid.62560.37) (ISNI:0000 0004 0378 8294); Harvard Medical School, Department of Medicine, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X); Brigham and Women’s Hospital, Division of Sleep and Circadian Disorders, Boston, USA (GRID:grid.62560.37) (ISNI:0000 0004 0378 8294) 
29  Tulane University School of Public Health and Tropical Medicine, Department of Epidemiology, New Orleans, USA (GRID:grid.265219.b) (ISNI:0000 0001 2217 8588) 
30  University of Maryland School of Medicine, Department of Medicine, Baltimore, USA (GRID:grid.411024.2) (ISNI:0000 0001 2175 4264); University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, USA (GRID:grid.411024.2) (ISNI:0000 0001 2175 4264); University of Maryland School of Medicine, Program in Health Equity and Population Health, Baltimore, USA (GRID:grid.411024.2) (ISNI:0000 0001 2175 4264) 
31  Brigham and Women’s Hospital, Channing Division of Network Medicine, Department of Medicine, Boston, USA (GRID:grid.62560.37) (ISNI:0000 0004 0378 8294) 
32  Brigham and Women’s Hospital, Department of Medicine, Boston, USA (GRID:grid.62560.37) (ISNI:0000 0004 0378 8294); Harvard Medical School, Department of Medicine, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X); Beth Israel Deaconess Medical Center, CardioVascular Institute (CVI), Boston, USA (GRID:grid.239395.7) (ISNI:0000 0000 9011 8547); Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X); Center for Life Sciences CLS-934, Boston, USA (GRID:grid.38142.3c) 
Pages
12436
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3062309816
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.