It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Effective blood glucose management is crucial for people with diabetes to avoid acute complications. Predicting extreme values accurately and in a timely manner is of vital importance to them. People with diabetes are particularly concerned about suffering a hypoglycemia (low value) event and, moreover, that the event will be prolonged in time. It is crucial to predict hyperglycemia (high value) and hypoglycemia events that may cause health damages in the short term and potential permanent damages in the long term. This paper describes our research on predicting hypoglycemia events at 30, 60, 90, and 120 minutes using machine learning methods. We propose using structured Grammatical Evolution and dynamic structured Grammatical Evolution to produce interpretable mathematical expressions that predict a hypoglycemia event. Our proposal generates white-box models induced by a grammar based on if-then-else conditions using blood glucose, heart rate, number of steps, and burned calories as the inputs for the machine learning technique. We apply these techniques to create three types of models: individualized, cluster, and population-based. They all are then compared with the predictions of eleven machine learning techniques. We apply these techniques to a dataset of 24 real patients of the Hospital Universitario Principe de Asturias, Madrid, Spain. The resulting models, presented as if-then-else statements that incorporate numeric, relational, and logical operations between variables and constants, are inherently interpretable. The True Positive Rate and True Negative Rate metrics are above 0.90 for 30-minute predictions, 0.80 for 60 min, and 0.70 for 90 min and 120 min for the three types of models. Individualized models exhibit the best metrics, while cluster and population-based models perform similarly. Structured and dynamic structured grammatical evolution techniques perform similarly for all forecasting horizons. Regarding the comparison of different machine learning techniques, on the shorter forecasting horizons, our proposals have a high probability of winning, a probability that diminishes on the longer time horizons. Structured grammatical evolution provides advanced forecasting models that facilitate model explanation, modification, and retesting, offering flexibility for refining solutions post-creation and a deeper understanding of blood glucose behavior. These models have been integrated into the glUCModel application, designed to serve people with diabetes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Universidad Complutense de Madrid, Madrid, Spain (GRID:grid.4795.f) (ISNI:0000 0001 2157 7667)
2 Universidad Complutense de Madrid, Madrid, Spain (GRID:grid.4795.f) (ISNI:0000 0001 2157 7667); Instituto de Tecnología del Conocimiento, Madrid, Spain (GRID:grid.4795.f)