It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Magnetism in two-dimensional materials reveals phenomena distinct from bulk magnetic crystals, with sensitivity to charge doping and electric fields in monolayer and bilayer van der Waals magnet CrI3. Within the class of layered magnets, semiconducting CrSBr stands out by featuring stability under ambient conditions, correlating excitons with magnetic order and thus providing strong magnon-exciton coupling, and exhibiting peculiar magneto-optics of exciton-polaritons. Here, we demonstrate that both exciton and magnetic transitions in bilayer and trilayer CrSBr are sensitive to voltage-controlled field-effect charging, exhibiting bound exciton-charge complexes and doping-induced metamagnetic transitions. Moreover, we demonstrate how these unique properties enable optical probes of local magnetic order, visualizing magnetic domains of competing phases across metamagnetic transitions induced by magnetic field or electrostatic doping. Our work identifies few-layer CrSBr as a rich platform for exploring collaborative effects of charge, optical excitations, and magnetism.
CrSBr is a van der Waals layered antiferromagnet. Unlike many other van der Waals magnetic materials it is air stable, and in addition hosts a rich array of magneto-optical responses. Here, Tabataba-Vakili et al demonstrate that the magnetic and optical response of CrSBr is sensitive to gating, allowing electrical control of the magneto-optical properties.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details









1 Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Fakultät für Physik, München, Germany (GRID:grid.5252.0) (ISNI:0000 0004 1936 973X); Munich Center for Quantum Science and Technology (MCQST), München, Germany (GRID:grid.510972.8)
2 Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Fakultät für Physik, München, Germany (GRID:grid.5252.0) (ISNI:0000 0004 1936 973X)
3 University of Chemistry and Technology Prague, Department of Inorganic Chemistry, Prague 6, Czech Republic (GRID:grid.448072.d) (ISNI:0000 0004 0635 6059)
4 National Institute for Materials Science, Research Center for Functional Materials, Tsukuba, Japan (GRID:grid.21941.3f) (ISNI:0000 0001 0789 6880)
5 National Institute for Materials Science, International Center for Materials Nanoarchitectonics, Tsukuba, Japan (GRID:grid.21941.3f) (ISNI:0000 0001 0789 6880)
6 Department of Physics, Basel, Switzerland (GRID:grid.6612.3) (ISNI:0000 0004 1937 0642)
7 Ioffe Institute, Saint Petersburg, Russian Federation (GRID:grid.423485.c) (ISNI:0000 0004 0548 8017)