It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Phytoextraction belongs to environmentally well-accepted remediation technologies to remove metals from contaminated soils. Due to long-time requirement, sufficient data for proper phytoextraction evaluation are missing. Four clones of fast-growing trees: two willow species (S1), Salix viminalis L. (Salix schwerinii E.L.Wolf × S. viminalis) × S. viminalis) and (S2)—Salix smithiana (Salix × smithiana Willd.), and two poplar clones (P1), Populus Max-4 (Populus nigra L. × Populus maximowiczii A. Henry) and (P2) Wolterson (P. nigra L.) were cultivated under field conditions at medium-to-high Cd and Pb, and low Zn soil contamination to assess trees’ long-term ability of biomass production and removal of potentially toxic elements (PTEs). The biomass yield and PTE uptake were measured during 8 years of regular growth under three rotation lengths: four harvests following 2-year periods (4 × 2y), two harvests in 4-year periods (2 × 4y), and one harvest representing 8 years of growth (1 × 8y).
Results
In most cases, the highest annual dry biomass yield was achieved with a 2 × 4y rotation (P1 = 20.9 t ha−1 y−1, S2 = 18.4 t ha−1y−1), and the yield decreased in order 2 × 4y > 1 × 8y > 4 × 2y of harvesting periods. Only clone S1 showed a different pattern. The differences in biomass yield substantially affected the PTE phytoextraction. The greatest amount of Cd and Zn was removed by willow S2, with the highest biomass yield, and the strongest ability to accumulate PTEs. With 2 × 4y rotation, S2 removed a substantial amount of Cd (9.07%) and Zn (3.43%) from the topsoil horizon (0–20 cm) and 5.62% Cd and 2.04% Zn from horizon 20–40 cm; phytoextraction rate was slightly lower for 1 × 8y rotation. The poplar P1 removed the most Pb in the 1 × 8y rotation, but the overall Pb phytoextraction was negligible. The results indicated that lignin and cellulose contents increased, and hemicellulose content decreased with increased concentrations of Cd, Pb and Zn in poplars wood.
Conclusions
The data confirmed that phytoextraction over longer harvest periods offered promising results for removing Cd from medium- to high-level contaminated soils; however, the ability of Pb removal was extremely low. The longer harvest period should be more economically feasible.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Czech University of Life Sciences, Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Prague 6 - Suchdol, Czech Republic (GRID:grid.15866.3c) (ISNI:0000 0001 2238 631X)