It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
3D printing of liquid metal remains a big challenge due to its low viscosity and large surface tension. In this study, we use Carbopol hydrogel and liquid gallium-indium alloy to prepare a liquid metal high internal phase emulsion gel ink, which can be used for direct-ink-writing 3D printing. The high volume fraction (up to 82.5%) of the liquid metal dispersed phase gives the ink excellent elastic properties, while the Carbopol hydrogel, as the continuous phase, provides lubrication for the liquid metal droplets, ensuring smooth flow of the ink during shear extrusion. These enable high-resolution and shape-stable 3D printing of three-dimensional structures. Moreover, the liquid metal droplets exhibit an electrocapillary phenomenon in the Carbopol hydrogel, which allows for demulsification by an electric field and enables electrical connectivity between droplets. We have also achieved the printing of ink on flexible, non-planar structures, and demonstrated the potential for alternating printing with various materials.
3D printing of liquid metal is important for the integrated design and manufacturing of flexible electronic devices. Here, Lin et al. demonstrate a liquid metal high internal phase emulsion gel used directly for direct-ink-writing 3D printing and activate the ink conductivity by electrocapillarity method.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
; Bai, Hua 2
1 Xiamen University, College of Materials, Xiamen, PR China (GRID:grid.12955.3a) (ISNI:0000 0001 2264 7233)
2 Xiamen University, College of Materials, Xiamen, PR China (GRID:grid.12955.3a) (ISNI:0000 0001 2264 7233); Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China (GRID:grid.510968.3)




