Content area

Abstract

Over-the-Air Federated Learning (OTA-FL) has been extensively investigated as a privacy-preserving distributed learning mechanism. Realistic systems will see FL clients with diverse size, weight, and power configurations. A critical research gap in existing OTA-FL research is the assumption of homogeneous client computational bit precision. Indeed, many clients may exploit approximate computing (AxC) where bit precisions are adjusted for energy and computational efficiency. The dynamic distribution of bit precision updates amongst FL clients poses an open challenge for OTA-FL, as is is incompatible in the wireless modulation superposition space. Here, we propose an AxC-based OTA-FL framework of clients with multiple precisions, demonstrating the following innovations: (i) optimize the quantization-performance trade-off for both server and clients within the constraints of varying edge computing capabilities and learning accuracy requirements, and (ii) develop heterogeneous gradient resolution OTA-FL modulation schemes to ensure compatibility with physical layer OTA aggregation. Our findings indicate that we can design modulation schemes that enable AxC based OTA-FL, which can achieve 50\% faster and smoother server convergence and a performance enhancement for the lowest precision clients compared to a homogeneous precision approach. This demonstrates the great potential of our AxC-based OTA-FL approach in heterogeneous edge computing environments.

Details

1009240
Title
Mixed-Precision Over-The-Air Federated Learning via Approximated Computing
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Jun 4, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-06-06
Milestone dates
2024-06-04 (Submission v1)
Publication history
 
 
   First posting date
06 Jun 2024
ProQuest document ID
3065122851
Document URL
https://www.proquest.com/working-papers/mixed-precision-over-air-federated-learning-via/docview/3065122851/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-06-07
Database
ProQuest One Academic