Abstract

Intrinsically stretchable organic photovoltaics have emerged as a prominent candidate for the next-generation wearable power generators regarding their structural design flexibility, omnidirectional stretchability, and in-plane deformability. However, formulating strategies to fabricate intrinsically stretchable organic photovoltaics that exhibit mechanical robustness under both repetitive strain cycles and high tensile strains remains challenging. Herein, we demonstrate high-performance intrinsically stretchable organic photovoltaics with an initial power conversion efficiency of 14.2%, exceptional stretchability (80% of the initial power conversion efficiency maintained at 52% tensile strain), and cyclic mechanical durability (95% of the initial power conversion efficiency retained after 100 strain cycles at 10%). The stretchability is primarily realised by delocalising and redistributing the strain in the active layer to a highly stretchable PEDOT:PSS electrode developed with a straightforward incorporation of ION E, which simultaneously enhances the stretchability of PEDOT:PSS itself and meanwhile reinforces the interfacial adhesion with the polyurethane substrate. Both enhancements are pivotal factors ensuring the excellent mechanical durability of the PEDOT:PSS electrode, which further effectively delays the crack initiation and propagation in the top active layer, and enables the limited performance degradation under high tensile strains and repetitive strain cycles.

The realization of intrinsically stretchable organic photovoltaics with excellent mechanical robustness remains challenging. Here, the authors redistribute the strain in the active layer to PEDOT:PSS electrodes with simultaneously enhanced stretchability and interfacial adhesion in the device.

Details

Title
Intrinsically stretchable organic photovoltaics by redistributing strain to PEDOT:PSS with enhanced stretchability and interfacial adhesion
Author
Wang, Jiachen 1   VIAFID ORCID Logo  ; Ochiai, Yuto 2   VIAFID ORCID Logo  ; Wu, Niannian 3 ; Adachi, Kiyohiro 2   VIAFID ORCID Logo  ; Inoue, Daishi 2 ; Hashizume, Daisuke 2   VIAFID ORCID Logo  ; Kong, Desheng 4   VIAFID ORCID Logo  ; Matsuhisa, Naoji 5   VIAFID ORCID Logo  ; Yokota, Tomoyuki 6   VIAFID ORCID Logo  ; Wu, Qiang 7 ; Ma, Wei 7   VIAFID ORCID Logo  ; Sun, Lulu 8   VIAFID ORCID Logo  ; Xiong, Sixing 2   VIAFID ORCID Logo  ; Du, Baocai 9 ; Wang, Wenqing 9 ; Shih, Chih-Jen 10 ; Tajima, Keisuke 2   VIAFID ORCID Logo  ; Aida, Takuzo 3   VIAFID ORCID Logo  ; Fukuda, Kenjiro 11   VIAFID ORCID Logo  ; Someya, Takao 12   VIAFID ORCID Logo 

 The University of Tokyo, Department of Electrical Engineering and Information Systems, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2169 1048); RIKEN Center for Emergent Matter Science (CEMS), Saitama, Japan (GRID:grid.474689.0); ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland (GRID:grid.5801.c) (ISNI:0000 0001 2156 2780) 
 RIKEN Center for Emergent Matter Science (CEMS), Saitama, Japan (GRID:grid.474689.0) 
 RIKEN Center for Emergent Matter Science (CEMS), Saitama, Japan (GRID:grid.474689.0); The University of Tokyo, Department of Chemistry and Biotechnology, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2169 1048) 
 Nanjing University, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X) 
 The University of Tokyo, Research Center for Advanced Science and Technology, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2169 1048); The University of Tokyo, Institute of Industrial Science, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2169 1048) 
 The University of Tokyo, Department of Electrical Engineering and Information Systems, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2169 1048); The University of Tokyo, Institute of Engineering Innovation, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2169 1048) 
 Xi’an Jiaotong University, State Key Laboratory for Mechanical Behaviour of Materials, Xi’an, China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243) 
 RIKEN, Thin-Film Device Laboratory, Saitama, Japan (GRID:grid.7597.c) (ISNI:0000 0000 9446 5255) 
 The University of Tokyo, Department of Electrical Engineering and Information Systems, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2169 1048); RIKEN Center for Emergent Matter Science (CEMS), Saitama, Japan (GRID:grid.474689.0) 
10  ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland (GRID:grid.5801.c) (ISNI:0000 0001 2156 2780) 
11  RIKEN Center for Emergent Matter Science (CEMS), Saitama, Japan (GRID:grid.474689.0); RIKEN, Thin-Film Device Laboratory, Saitama, Japan (GRID:grid.7597.c) (ISNI:0000 0000 9446 5255) 
12  The University of Tokyo, Department of Electrical Engineering and Information Systems, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2169 1048); RIKEN Center for Emergent Matter Science (CEMS), Saitama, Japan (GRID:grid.474689.0); RIKEN, Thin-Film Device Laboratory, Saitama, Japan (GRID:grid.7597.c) (ISNI:0000 0000 9446 5255) 
Pages
4902
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3065628595
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.