Full Text

Turn on search term navigation

© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Gigatonne-scale atmospheric carbon dioxide removal (CDR) will almost certainly be needed to supplement the emission reductions required to keep global warming between 1.5–2 °C. Ocean alkalinity enhancement (OAE) is an emerging marine CDR method with the addition of pulverised minerals to the surface ocean being one widely considered approach. A concern of this approach is the potential for dissolution products released from minerals to impact phytoplankton communities. We conducted an experiment with 10 pelagic mesocosms (M1–M10) in Raunefjorden, Bergen, Norway, to assess the implications of simulated silicate- and calcium-based mineral OAE on a coastal plankton community. Five mesocosms (M1, M3, M5, M7, and M9) were enriched with silicate ( 75 µmol L-1 Na2SiO3), alkalinity along a gradient from 0 to 600 µmol kg-1, and magnesium in proportion to alkalinity additions. The other five mesocosms (M2, M4, M6, M8, M10) were enriched with alkalinity along the same gradient and calcium in proportion to alkalinity additions. The experiment explored many components of the plankton community, from microbes to fish larvae, and here we report on the influence of simulated mineral based OAE on diatom silicification. Macronutrients (nitrate and phosphate) limited silicification at the onset of the experiment until nutrient additions on day 26. Silicification was significantly greater in the silicate-based mineral treatment, with all genera except Cylindrotheca displaying an increase in silicification as a result of the increased concentration of dissolved silicate. In contrast to the effect of differences in dissolved silicate concentrations between the two mineral treatments, increases in alkalinity only influenced the silicification of two genera, Pseudo-nitzschia and Nitzschia. The four other genera (Arcocellulus, Cylindrotheca, Skeletonema, and Thalassiosira) investigated here displayed no significant changes in silicification as a result of alkalinity increases between 0 and 600 µmol kg-1 above natural levels. In summary, our findings illustrate that the enhancement of alkalinity via simulated silicate- and calcium-based methods has limited genus-specific impacts on the silicification of diatoms. This research underscores the importance of understanding the full breadth of different OAE approaches, their risks, co-benefits, and potential for interactive effects.

Details

Title
Investigating the effect of silicate- and calcium-based ocean alkalinity enhancement on diatom silicification
Author
Ferderer, Aaron 1   VIAFID ORCID Logo  ; Schulz, Kai G 2   VIAFID ORCID Logo  ; Riebesell, Ulf 3   VIAFID ORCID Logo  ; Baker, Kirralee G 4 ; Chase, Zanna 5   VIAFID ORCID Logo  ; Bach, Lennart T 5   VIAFID ORCID Logo 

 Institute for Marine and Antarctic Studies, Ecology & Biodiversity, University of Tasmania, Hobart, TAS, Australia; National Collections and Marine Infrastructure, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia 
 Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia 
 Marine Biogeochemistry, Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany 
 Institute for Marine and Antarctic Studies, Ecology & Biodiversity, University of Tasmania, Hobart, TAS, Australia; The Australian Centre for Excellence in Antarctic Science (ACEAS), University of Tasmania, Hobart, TAS, Australia 
 Institute for Marine and Antarctic Studies, Ecology & Biodiversity, University of Tasmania, Hobart, TAS, Australia 
Pages
2777-2794
Publication year
2024
Publication date
2024
Publisher
Copernicus GmbH
ISSN
17264170
e-ISSN
17264189
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3066741065
Copyright
© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.