You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2010. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Plant species introduced into new regions can both leave behind co-evolved pathogens and acquire new ones. Traits important to infection and virulence are subject to rapid evolutionary change in both plant and pathogen. Using Stemphylium solani, a native foliar necrotroph on clovers (Trifolium and Medicago) in California, USA, we explore how plant-fungal interactions may change in an invasion context. After four generations of experimental serial passage through multiple hosts, Stemphylium consistently showed increased infection rates but no consistent change in damage to the host. In a historical opportunity study, we compared infection and virulence across four groups of clover hosts: California natives, European clovers not found in California, and both California and European genotypes of species naturalized in California. There was significant variation among hosts, but no pattern across the four groups. However, in direct comparisons of familiar California genotypes to unfamiliar European genotypes of the same naturalized species, Stemphylium consistently infected familiar hosts more frequently, while causing less damage on them. This pattern is consistent with the hypothesis of adaptive evolution in both the pathogen (ability to infect) and the host (tolerance of infection). Together these results suggest the potential for rapid evolution to alter interactions between plant invaders and their natural enemies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Environmental Studies Department, University of California, Santa Cruz, CA, USA
2 Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA