You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2010. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Switchgrass (Panicum virgatum L.) is a perennial grass native to the United States that has been studied as a sustainable source of biomass fuel. Although many field-scale studies have examined the potential of this grass as a bioenergy crop, these studies have not been integrated. In this study, we present an empirical model for switchgrass yield and use this model to predict yield for the conterminous United States. We added environmental covariates to assembled yield data from field trials based on geographic location. We developed empirical models based on these data. The resulting empirical models, which account for spatial autocorrelation in the field data, provide the ability to estimate yield from factors associated with climate, soils, and management for both lowland and upland varieties of switchgrass. Yields of both ecotypes showed quadratic responses to temperature, increased with precipitation and minimum winter temperature, and decreased with stand age. Only the upland ecotype showed a positive response to our index of soil wetness and only the lowland ecotype showed a positive response to fertilizer. We view this empirical modeling effort, not as an alternative to mechanistic plant-growth modeling, but rather as a first step in the process of functional validation that will compare patterns produced by the models with those found in data. For the upland variety, the correlation between measured yields and yields predicted by empirical models was 0.62 for the training subset and 0.58 for the test subset. For the lowland variety, the correlation was 0.46 for the training subset and 0.19 for the test subset. Because considerable variation in yield remains unexplained, it will be important in the future to characterize spatial and local sources of uncertainty associated with empirical yield estimates.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN, USA
2 Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
3 Dartmouth College, Thayer School of Engineering, Hanover, NH, USA