Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Waveform design is a crucial factor in electronic surveillance (ES) systems. In this paper, we introduce an algorithm that designs a low probability of intercept (LPI) radar waveform. Our approach directly minimizes the detection probability of summation detectors based on FFT filter banks. The algorithm is derived from the general quadratic optimization framework, which inherits the monotonic properties of such methods. To expedite overall convergence, we have integrated acceleration schemes based on the squared iterative method (SQUAREM). Additionally, the proposed algorithm can be executed through fast Fourier transform (FFT) operations, enhancing computational efficiency. With some modifications, the algorithm can be adjusted to incorporate spectral constraints, increasing its flexibility. Numerical experiments indicate that our proposed algorithm outperforms existing ones in terms of both intercept properties and computational complexity.

Details

Title
LPI Sequences Optimization Method against Summation Detector Based on FFT Filter Bank
Author
Liu, Qiang  VIAFID ORCID Logo  ; Guo, Fucheng; Xiong, Kunlai; Liu, Zhangmeng; Hu, Weidong
First page
2021
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3067436066
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.