Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Stone matrix asphalt and asphalt concrete mixture with 13.2 mm nominal maximum aggregate size (named SMA13 and AC13, respectively) are widely used in the surface course of asphalt pavement in China. Generally, the pavement performance of SMA13 is superior to that of AC13, while the cost of the former is significantly higher than that of the latter. The objective of this paper was to develop a new hot mix asphalt (named SMAC13) whose performance and cost are between SMA13 and AC13. A boundary sieve size (BSS) of 2.36 mm was selected between fine and coarse aggregates. Based on the union set of aggregate gradation ranges of SMA13 and AC13, the family of gradation curves in the forms of S shapes were designed in terms of the BSS passing rate. According to the evaluation of the skeleton interlock of coarse aggregate of the gradation curve family, the aggregate gradation range of SMAC13 was determined. Also, the performance of three kinds of asphalt mixtures were compared through laboratory tests. The results indicated that SMA13 shows the best rutting resistance, followed by SMAC13 then AC13, while in terms of low-temperature performance in resistance to cracking, the sequence is SMAC13, AC13, and SMA13. The sequence of water stability is AC13, SMAC13, and SMA13. Furthermore, the cost of SMAC13 is 25% less than that of SMA13. Therefore, SMAC13 can be used as an alternative for the surface course of asphalt pavement in terms of performance and cost.

Details

Title
Experimental Research on Gradation Range and Performance of SMAC13
Author
Zhen, Qianqian 1 ; Cao, Weidong 2 ; Dong, Rui 1 ; Liu, Shutang 2 ; Liu, Ning 1 ; Zhan, Zunhao 2 ; Li, Yingjian 2 

 Shandong Hi-Speed Infrastructure Construction Co., Ltd., Jinan 250001, China; [email protected] (Q.Z.); [email protected] (R.D.); [email protected] (N.L.) 
 School of Qilu Transportation, Shandong University, Jinan 250002, China; [email protected] (Z.Z.); [email protected] (Y.L.) 
First page
2680
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3067501785
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.