It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recent years have seen a rapid growth in the application of various machine learning methods for reaction outcome prediction. Deep learning models have gained popularity due to their ability to learn representations directly from the molecular structure. Gaussian processes (GPs), on the other hand, provide reliable uncertainty estimates but are unable to learn representations from the data. We combine the feature learning ability of neural networks (NNs) with uncertainty quantification of GPs in a deep kernel learning (DKL) framework to predict the reaction outcome. The DKL model is observed to obtain very good predictive performance across different input representations. It significantly outperforms standard GPs and provides comparable performance to graph neural networks, but with uncertainty estimation. Additionally, the uncertainty estimates on predictions provided by the DKL model facilitated its incorporation as a surrogate model for Bayesian optimization (BO). The proposed method, therefore, has a great potential towards accelerating reaction discovery by integrating accurate predictive models that provide reliable uncertainty estimates with BO.
Deep learning models have gained popularity for chemical reaction outcome prediction due to their ability to learn representations directly from the molecular structure, whereas Gaussian processes provide reliable uncertainty estimates but are unable to learn representations from the data. Here, the authors combine the feature learning ability of neural networks with uncertainty quantification of Gaussian processes in a deep kernel learning framework to predict reaction outcomes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer