Full Text

Turn on search term navigation

© 2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aiming at the problem that the current hydrocyclone separator is affected by multiple structural parameters and there is interaction between the multiple structural parameters, it is difficult to determine the optimal structure. Taking the new axial inlet hydrocyclone separator as the research object, a fast parametric optimization method based on response surface optimization method is proposed. The overflow outlet diameter, overflow tube depth and small cone length, which have significant influence on the separation efficiency of the axial inlet hydrocyclone separator, are selected as the optimal variables, and the cyclone separation efficiency is selected as the response index. A mathematical driving model between the response index and the optimal variables is constructed by using the second-order polynomial basis function. The optimal structural parameters of the new axial inlet hydrocyclone separator are obtained through the response optimization of the parameter variables in the global response range through the mathematical driving model, and the numerical simulation method and laboratory test are double verified. The results demonstrated that the axial inlet hydrocyclone achieved the highest separation efficiency within the studied operational parameter range when the overflow pipe diameter was 6mm, the overflow pipe depth was 20mm, and the small cone length was 60mm. The separation efficiency improved from 89% to 93%. The rapid optimization of the structural parameters of the axial inlet hydrocyclone was successfully accomplished using the response surface optimization method.

Details

Title
Research on structural parameter optimization of a new axial inlet hydrocyclone separator based on response surface optimization method
Author
Zhang, Yong; Zhang, Yan; Liu, Wei  VIAFID ORCID Logo  ; Yi, Hongguang; Wang, He
First page
e0295978
Section
Research Article
Publication year
2024
Publication date
Jan 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3069201467
Copyright
© 2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.