Full Text

Turn on search term navigation

© 2024 Emad S. Hassan. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Filter Bank Multi-Carrier (FBMC) is attracting significant interest as a multi-carrier modulation (MCM) approach for future communication systems. It offers numerous advantages in contrast to Orthogonal Frequency Division Multiplexing (OFDM). Nonetheless, similar to many other MCM techniques, FBMC encounters a significant challenge with a high Peak-to-Average Power Ratio (PAPR). Additionally, incorporating Multiple-Input and Multiple-Output (MIMO) into FBMC presents heightened difficulties due to the presence of complex interference and increased computational complexity. In this paper, we first study the performance analysis of MIMO based Quadrature Amplitude Modulation (QAM)-FBMC systems considering the system complexity and interference. To enhance coverage effectively using beamforming with multiple antennas, it is essential to reduce PAPR to minimize the input backoff (IBO) required by nonlinear power amplifiers. Therefore, we propose new PAPR reduction method for MIMO based QAM-FBMC systems leveraging the null space within the MIMO channel using clipping and filtering (CF) technique. The PAPR reduction signals generated in this process are then mapped to the null space of the overall MIMO channel for each frequency block. Through computer simulations using a nonlinear power amplifier model, we illustrate that the proposed method substantially enhances both PAPR and throughput of MIMO based FBMC systems compared to conventional methods.

Details

Title
Performance enhancement and PAPR reduction for MIMO based QAM-FBMC systems
Author
Hassan, Emad S  VIAFID ORCID Logo 
First page
e0296999
Section
Research Article
Publication year
2024
Publication date
Jan 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3069213903
Copyright
© 2024 Emad S. Hassan. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.