Full Text

Turn on search term navigation

© 2024 Farhat et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

The global evolution of pre-hospital care systems faces dynamic challenges, particularly in multinational settings. Machine learning (ML) techniques enable the exploration of deeply embedded data patterns for improved patient care and resource optimisation. This study’s objective was to accurately predict cases that necessitated transportation versus those that did not, using ML techniques, thereby facilitating efficient resource allocation.

Methods

ML algorithms were utilised to predict patient transport decisions in a Middle Eastern national pre-hospital emergency medical care provider. A comprehensive dataset comprising 93,712 emergency calls from the 999-call centre was analysed using R programming language. Demographic and clinical variables were incorporated to enhance predictive accuracy. Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), and Adaptive Boosting (AdaBoost) algorithms were trained and validated.

Results

All the trained algorithm models, particularly XGBoost (Accuracy = 83.1%), correctly predicted patients’ transportation decisions. Further, they indicated statistically significant patterns that could be leveraged for targeted resource deployment. Moreover, the specificity rates were high; 97.96% in RF and 95.39% in XGBoost, minimising the incidence of incorrectly identified “Transported” cases (False Positive).

Conclusion

The study identified the transformative potential of ML algorithms in enhancing the quality of pre-hospital care in Qatar. The high predictive accuracy of the employed models suggested actionable avenues for day and time-specific resource planning and patient triaging, thereby having potential to contribute to pre-hospital quality, safety, and value improvement. These findings pave the way for more nuanced, data-driven quality improvement interventions with significant implications for future operational strategies.

Details

Title
Predictive modelling of transport decisions and resources optimisation in pre-hospital setting using machine learning techniques
Author
Farhat, Hassan  VIAFID ORCID Logo  ; Makhlouf, Ahmed; Padarath Gangaram; Kawther El Aifa; Howland, Ian  VIAFID ORCID Logo  ; Fatma Babay Ep Rekik; Abid, Cyrine  VIAFID ORCID Logo  ; Mohamed Chaker Khenissi; Castle, Nicholas; Al-Shaikh, Loua; Khadhraoui, Moncef; Gargouri, Imed; Laughton, James  VIAFID ORCID Logo  ; Alinier, Guillaume  VIAFID ORCID Logo 
First page
e0301472
Section
Research Article
Publication year
2024
Publication date
May 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3069285377
Copyright
© 2024 Farhat et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.