Full Text

Turn on search term navigation

© 2024 Yue et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nine land types in the northern mining area (BKQ) (mining land, smelting land, living area), the old mining area (LKQ) (whole-ore heap, wasteland, grassland), and southern mining area (NKQ) (grassland, shrubs, farmland) of Xikuang Mountain were chosen to explore the composition and functions of soil bacterial communities under different habitats around mining areas. The composition and functions of soil bacterial communities were compared among the sampling sites using 16S rRNA high-throughput sequencing and metagenomic sequencing. α diversity analysis showed the soil bacterial diversity and abundance in the old mining area were significantly higher than those in the northern mining area. β diversity analysis demonstrated that the soil bacterial community composition was highly similar among different vegetation coverages in the southern mining area. Microbial community function analysis showed the annotated KEGG function pathways and eggNOG function composition were consistent between the grassland of the old mining area and the grassland of the southern mining area. This study uncovers the soil bacterial community composition and functions among different habitats in the mining areas of Xikuang Mountain and will underlie soil ecosystem restoration in different habitats under heavy metal pollution around the mining areas there.

Details

Title
Response of microbial community composition and function to land use in mining soils of Xikuang Mountain in Hunan
Author
Jiao Yue; Zhang, Dongpeng; Cao, Miaomiao; Li, Yukui; Liang, Qianwen; Liu, Fei  VIAFID ORCID Logo  ; Dong, YuQiang
First page
e0299550
Section
Research Article
Publication year
2024
Publication date
May 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3069287711
Copyright
© 2024 Yue et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.