Full text

Turn on search term navigation

© 2024 Hamza et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Automatic Urdu handwritten text recognition is a challenging task in the OCR industry. Unlike printed text, Urdu handwriting lacks a uniform font and structure. This lack of uniformity causes data inconsistencies and recognition issues. Different writing styles, cursive scripts, and limited data make Urdu text recognition a complicated task. Major languages, such as English, have experienced advances in automated recognition, whereas low-resource languages, such as Urdu, still lag. Transformer-based models are promising for automated recognition in high- and low-resource languages such as Urdu. This paper presents a transformer-based method called ET-Network that integrates self-attention into EfficientNet for feature extraction and a transformer for language modeling. The use of self-attention layers in EfficientNet helps to extract global and local features that capture long-range dependencies. These features proceeded into a vanilla transformer to generate text, and a prefix beam search is used for the finest outcome. NUST-UHWR, UPTI2.0, and MMU-OCR-21 are three datasets used to train and test the ET Network for a handwritten Urdu script. The ET-Network improved the character error rate by 4% and the word error rate by 1.55%, while establishing a new state-of-the-art character error rate of 5.27% and a word error rate of 19.09% for Urdu handwritten text.

Details

Title
ET-Network: A novel efficient transformer deep learning model for automated Urdu handwritten text recognition
Author
Hamza, Ameer  VIAFID ORCID Logo  ; Ren, Shengbing  VIAFID ORCID Logo  ; Usman Saeed  VIAFID ORCID Logo 
First page
e0302590
Section
Research Article
Publication year
2024
Publication date
May 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3069288055
Copyright
© 2024 Hamza et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.