It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Polyploid is considered an advantage that has evolved to be more environmentally adaptable than its diploid. To understand if doubled chromosome of diploid rice can improve drought tolerance, we evaluated the diploid (2X) and autotetraploid (4X) plants of three indica and three japonica varieties. Drought stress in the plastic bucket of four-leaf stage revealed that the drought tolerance of 4X plants was lower than that of its diploid donor plants. The assay of photosynthetic rate of all varieties showed that all 4X varieties had lower rates than their diploid donors. The capacity for reactive oxygen species production and scavenging varied among different 2X and 4X varieties. Further, transcriptomic analysis of 2X and 4X plants of four varieties under normal and drought condition showed that the wide variation of gene expression was caused by difference of varieties, not by chromosome ploidy. However, weighted gene co-expression network analysis (WGCNA) revealed that the severe interference of photosynthesis-related genes in tetraploid plants under drought stress is the primary reason for the decrease of drought tolerance in autotetraploid lines. Consistently, new transcripts analysis in autotetraploid revealed that the gene transcription related with mitochondrion and plastid of cell component was influenced most significantly. The results indicated that chromosome doubling of diploid rice weakened their drought tolerance, primarily due to disorder of photosynthesis-related genes in tetraploid plants under drought stress. Maintain tetraploid drought tolerance through chromosome doubling breeding in rice needs to start with the selection of parental varieties and more efforts.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Shanghai Agrobiological Gene Center, Shanghai, China (GRID:grid.410568.e) (ISNI:0000 0004 1774 4348); Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China (GRID:grid.418524.e) (ISNI:0000 0004 0369 6250)
2 Shanghai Agrobiological Gene Center, Shanghai, China (GRID:grid.410568.e) (ISNI:0000 0004 1774 4348)
3 Wuhan Acadamy of Agricultual Sciences, Institute of Crop Sciences, Wuhan, China (GRID:grid.464345.4)