Full Text

Turn on search term navigation

© 2024 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Borophene nanosheets appear in various sizes and shapes, ranging from simple planar structures to complicated polyhedral formations. Due to their unique chemical, optical, and electrical properties, Borophene nanosheets are theoretically and practically attractive and because of their high thermal conductivity, boron nanosheets are suitable for efficient heat transmission applications. In this paper, temperature indices of borophene nanosheets are computed and these indices are employed in QSPR analysis of attributes like Young’s modulus, Shear modulus, and Poisson’s ratio of borophene nanosheets and borophene β12 sheets. The regression model for the F-Temperature index is discovered to be the best fit for shear modulus, the reciprocal product connectivity temperature index is discovered to be fit for Poisson’s ratio and the second hyper temperature index is discovered to be fit for Young’s modulus based on the correlation coefficient.

Details

Title
Molecular temperature descriptors as a novel approach for QSPR analysis of Borophene nanosheets
Author
Abdul Rauf Khan  VIAFID ORCID Logo  ; Ullah, Zafar; Imran, Muhammad  VIAFID ORCID Logo  ; Sidra Aziz Malik; Alamoudi, Lamis M; Cancan, Murat  VIAFID ORCID Logo 
First page
e0302157
Section
Research Article
Publication year
2024
Publication date
Jun 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3069528878
Copyright
© 2024 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.