Content area

Abstract

With the evolution of artificial intelligence-generated content (AIGC) techniques and the development of space-air-ground integrated networks (SAGIN), there will be a growing opportunity to enhance more users' mobile experience with customized AIGC applications. This is made possible through the use of parameter-efficient fine-tuning (PEFT) training alongside mobile edge computing. In this paper, we formulate the optimization problem of maximizing the parameter training efficiency of the SAGIN system over wireless networks under limited resource constraints. We propose the Parameter training efficiency Aware Resource Allocation (PARA) technique to jointly optimize user association, data offloading, and communication and computational resource allocation. Solid proofs are presented to solve this difficult sum of ratios problem based on quadratically constrained quadratic programming (QCQP), semidefinite programming (SDP), graph theory, and fractional programming (FP) techniques. Our proposed PARA technique is effective in finding a stationary point of this non-convex problem. The simulation results demonstrate that the proposed PARA method outperforms other baselines.

Details

1009240
Title
Parameter Training Efficiency Aware Resource Allocation for AIGC in Space-Air-Ground Integrated Networks
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Jun 19, 2024
Section
Computer Science; Electrical Engineering and Systems Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-06-21
Milestone dates
2024-06-19 (Submission v1)
Publication history
 
 
   First posting date
21 Jun 2024
ProQuest document ID
3070871278
Document URL
https://www.proquest.com/working-papers/parameter-training-efficiency-aware-resource/docview/3070871278/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-06-22
Database
ProQuest One Academic