Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Facial emotion recognition (FER) is crucial across psychology, neuroscience, computer vision, and machine learning due to the diversified and subjective nature of emotions, varying considerably across individuals, cultures, and contexts. This study explored FER through convolutional neural networks (CNNs) and Histogram Equalization techniques. It investigated the impact of histogram equalization, data augmentation, and various model optimization strategies on FER accuracy across different datasets like KDEF, CK+, and FER2013. Using pre-trained VGG architectures, such as VGG19 and VGG16, this study also examined the effectiveness of fine-tuning hyperparameters and implementing different learning rate schedulers. The evaluation encompassed diverse metrics including accuracy, Area Under the Receiver Operating Characteristic Curve (AUC-ROC), Area Under the Precision–Recall Curve (AUC-PRC), and Weighted F1 score. Notably, the fine-tuned VGG architecture demonstrated a state-of-the-art performance compared to conventional transfer learning models and achieved 100%, 95.92%, and 69.65% on the CK+, KDEF, and FER2013 datasets, respectively.

Details

Title
Simple Histogram Equalization Technique Improves Performance of VGG Models on Facial Emotion Recognition Datasets
Author
Jaher Hassan Chowdhury; Liu, Qian  VIAFID ORCID Logo  ; Ramanna, Sheela  VIAFID ORCID Logo 
First page
238
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19994893
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072235586
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.