Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Climate change biotic and abiotic stressors lead to unpredictable crop yield losses, threatening global food and nutritional security. In the past, traditional breeding has been instrumental in fulfilling food demand; however, owing to its low efficiency, dependence on environmental conditions, labor intensity, and time consumption, it fails to maintain global food demand in the face of a rapidly changing environment and an expanding population. In this regard, plant breeders need to integrate multiple disciplines and technologies, such as genotyping, phenotyping, and envirotyping, in order to produce stress-resilient and high-yielding crops in a shorter time. With the technological revolution, plant breeding has undergone various reformations, for example, artificial selection breeding, hybrid breeding, molecular breeding, and precise breeding, which have been instrumental in developing high-yielding and stress-resilient crops in modern agriculture. Marker-assisted selection, also known as marker-assisted breeding, emerged as a game changer in modern breeding and has evolved over time into genomics-assisted breeding (GAB). It involves genomic information of crops to speed up plant breeding in order to develop stress-resilient and high-yielding crops. The combination of speed breeding with genomic and phenomic resources enabled the identification of quantitative trait loci (QTLs)/genes quickly, thereby accelerating crop improvement efforts. In this review, we provided an update on rapid advancement in molecular plant breeding, mainly GAB, for efficient crop improvements. We also highlighted the importance of GAB for improving biotic and abiotic stress tolerance as well as crop productivity in different crop systems. Finally, we discussed how the expansion of GAB to omics-assisted breeding (OAB) will contribute to the development of future resilient crops.

Details

Title
Genomics-Assisted Breeding: A Powerful Breeding Approach for Improving Plant Growth and Stress Resilience
Author
Tyagi, Anshika 1 ; Zahoor Ahmad Mir 2   VIAFID ORCID Logo  ; Almalki, Mohammed A 3   VIAFID ORCID Logo  ; Deshmukh, Rupesh 4   VIAFID ORCID Logo  ; Sajad Ali 1 

 Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; [email protected] 
 Department of Plant Science and Agriculture, University of Manitoba, Winnipeg, MB R2M0TB, Canada; [email protected] 
 Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia 
 Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, India 
First page
1128
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072248456
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.