Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Maize productivity in the central belt plays a significant role in the food security of China. With good adaptability and disease resistance, landrace germplasm is important for maize improvement. A total of 246 landrace accessions were collected from the maize belts in central China and genotyped with the SLAF-seq (Specific-Locus Amplified Fragment Sequencing) method, and 144,650 SNPs were obtained for each accession. The results showed that the landrace accessions could be divided into three major groups. In the cluster results, Group I included 64 accessions, which mainly belonged to the landrace of White horse teeth; Group II had 71 accessions, which mainly belonged to the lantern red landraces; the rest of the 116 accessions were clustered as Group III, including a variety of types landraces and seven indicator inbred lines. In the results of structure and multidimensional scaling, the accessions’ attribution differed with the clusters, the main reason for which is the attribution change in intermediate germplasms. Linkage disequilibrium decay distance was 0.98 kb, which was much lower than that of temperate and tropical maize inbred lines, indicated the much higher genetic diversity of landrace germplasms. The results can help us select suitable landrace germplasms and speed up the process of inbred line development and maize improvement.

Details

Title
Genetic and Molecular Characterization of Maize Landraces from Central China
Author
Guo, Rui 1 ; Li, Tingting 2 ; Zhang, Quanguo 1 ; Wang, Jianghao 1 ; Guo, Jinjie 3 ; Wang, Liwei 4 ; Song, Liang 4 ; Yan, Yuanyuan 4 ; Zhang, Dongmin 1 ; Wei, Jianfeng 1 ; Li, Xinghua 1 ; Song, Wei 1 

 Key Laboratory of Crop Genetics and Breeding of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China; [email protected] (R.G.); [email protected] (T.L.); 
 Key Laboratory of Crop Genetics and Breeding of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China; [email protected] (R.G.); [email protected] (T.L.); ; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Baoding 071001, China 
 State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Baoding 071001, China 
 Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China 
First page
1278
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072250456
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.