Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Glycyrrhiza is an important medicinal crop that has been extensively utilized in the food and medical sectors, yet studies on hyperspectral remote sensing monitoring of glycyrrhiza are currently scarce. This study analyzes glycyrrhiza hyperspectral images, extracts characteristic bands and vegetation indices, and constructs inversion models using different input features. The study obtained ground and unmanned aerial vehicle (UAV) hyperspectral images and chlorophyll content (called Soil and Plant Analyzer Development (SPAD) values) from sampling sites at three growth stages of glycyrrhiza (regreening, flowering, and maturity). Hyperspectral data were smoothed using the Savitzky–Golay filter, and the feature vegetation index was selected using the Pearson Correlation Coefficient (PCC) and Recursive Feature Elimination (RFE). Feature extraction was performed using Competitive Adaptive Reweighted Sampling (CARS), Genetic Algorithm (GA), and Successive Projections Algorithm (SPA). The SPAD values were then inverted using Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), Random Forest (RF), and Extreme Gradient Boosting (XGBoost), and the results were analyzed visually. The results indicate that in the ground glycyrrhiza inversion model, the GA-XGBoost model combination performed best during the regreening period, with R2, RMSE, and MAE values of 0.95, 0.967, and 0.825, respectively, showing improved model accuracy compared to full-spectrum methods. In the UAV glycyrrhiza inversion model, the CARS-PLSR combination algorithm yielded the best results during the maturity stage, with R2, RMSE, and MAE values of 0.83, 1.279, and 1.215, respectively. This study proposes a method combining feature selection techniques and machine learning algorithms that can provide a reference for rapid, nondestructive inversion of glycyrrhiza SPAD at different growth stages using hyperspectral sensors. This is significant for monitoring the growth of glycyrrhiza, managing fertilization, and advancing precision agriculture.

Details

Title
Inversion of Glycyrrhiza Chlorophyll Content Based on Hyperspectral Imagery
Author
Xu, Miaomiao 1 ; Dai, Jianguo 1 ; Zhang, Guoshun 1 ; Hou, Wenqing 2   VIAFID ORCID Logo  ; Mu, Zhengyang 1 ; Chen, Peipei 1 ; Cao, Yujuan 1 ; Zhao, Qingzhan 1 

 College of Information Science and Technology, Shihezi University, Shihezi 832000, China; [email protected] (M.X.); ; Geospatial Information Engineering Research Center, Xinjiang Production and Construction Crops, Shihezi 832000, China; Industrial Technology Research Institute, Xinjiang Production and Construction Corps, Shihezi 832000, China 
 School of Information Network Security, Xinjiang University of Political Science and Law, Tumxuk 843900, China 
First page
1163
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072250496
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.