Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hydrogen, due to its high energy density, stands out as an energy storage method for the car industry in order to reduce the impact of the automotive sector on air pollution and global warming. The fuel cell electric vehicle (FCEV) emerges as a modification of the electric car by adding a proton exchange membrane fuel cell (PEMFC) to the battery pack and electric motor, that is capable of converting hydrogen into electric energy. In order to control the energy flow of so many elements, an optimal energy management system (EMS) is needed, where rule-based strategies represent the smallest computational burden and are the most widely used in the industry. In this work, a rule-based operation mode control strategy for the EMS of an FCEV validated by different driving cycles and several tests at the strategic points of the battery state of charge (SOC) is proposed. The results obtained in the new European driving cycle (NEDC) show the 12 kW battery variation of 2% and a hydrogen consumption of 1.2 kg/100 km compared to the variation of 1.42% and a consumption of 1.08 kg/100 km obtained in the worldwide harmonized light-duty test cycle (WLTC). Moreover, battery tests have demonstrated the optimal performance of the proposed EMS strategy.

Details

Title
Rule-Based Operation Mode Control Strategy for the Energy Management of a Fuel Cell Electric Vehicle
Author
Uralde, Jokin  VIAFID ORCID Logo  ; Barambones, Oscar  VIAFID ORCID Logo  ; Asier del Rio  VIAFID ORCID Logo  ; Calvo, Isidro  VIAFID ORCID Logo  ; Artetxe, Eneko  VIAFID ORCID Logo 
First page
214
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23130105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072269861
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.