Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper introduces an improved methodology designed to address a practical deficit of existing methodologies by incorporating circuit-level analysis in the assessment of building microgrid reliability. The scientific problem at hand involves devising a systematic approach that integrates circuit modeling, Probability Density Function (PDF) selection, formulation of reliability functions, and Fault Tree Analysis (FTA) tailored specifically for the distinctive features of building microgrids. This method entails analyzing inter-component relationships to gain comprehensive insights into system behavior. By harnessing the circuit models and theoretical framework proposed herein, precise estimations of microgrid failure rates can be attained. To complement this approach, we propose a thorough investigation utilizing reliability curves and importance measures, providing valuable insights into individual device failure probabilities over time. Such time-based analysis plays a crucial role in proactively identifying potential failures and facilitating efficient maintenance planning for microgrid devices. We demonstrate the application of this methodology to the University of Antioquia (UdeA) Microgrid, a low-voltage system comprising critical components such as solar panels, microinverters, inverters/chargers, batteries, and charge controllers.

Details

Title
A Step-by-Step Methodology for Obtaining the Reliability of Building Microgrids Using Fault TreeAnalysis
Author
Patiño-Álvarez, Gustavo A 1 ; Arias-Pérez, Johan S 2 ; Muñoz-Galeano, Nicolás 2   VIAFID ORCID Logo 

 Department of Electronics and Telecommunications Engineering, Universidad de Antioquia (UdeA), Medellín 050010, Colombia; [email protected] 
 Research Group on Efficient Energy Management (GIMEL), Department of Electrical Engineering, Universidad de Antioquia (UdeA), Medellín 050010, Colombia; [email protected] 
First page
131
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2073431X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072301102
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.