Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Alzheimer’s disease (AD) is a neurological disorder that significantly impairs cognitive function, leading to memory loss and eventually death. AD progresses through three stages: early stage, mild cognitive impairment (MCI) (middle stage), and dementia. Early diagnosis of Alzheimer’s disease is crucial and can improve survival rates among patients. Traditional methods for diagnosing AD through regular checkups and manual examinations are challenging. Advances in computer-aided diagnosis systems (CADs) have led to the development of various artificial intelligence and deep learning-based methods for rapid AD detection. This survey aims to explore the different modalities, feature extraction methods, datasets, machine learning techniques, and validation methods used in AD detection. We reviewed 116 relevant papers from repositories including Elsevier (45), IEEE (25), Springer (19), Wiley (6), PLOS One (5), MDPI (3), World Scientific (3), Frontiers (3), PeerJ (2), Hindawi (2), IO Press (1), and other multiple sources (2). The review is presented in tables for ease of reference, allowing readers to quickly grasp the key findings of each study. Additionally, this review addresses the challenges in the current literature and emphasizes the importance of interpretability and explainability in understanding deep learning model predictions. The primary goal is to assess existing techniques for AD identification and highlight obstacles to guide future research.

Details

Title
Deep Learning for Alzheimer’s Disease Prediction: A Comprehensive Review
Author
Malik, Isra 1 ; Iqbal, Ahmed 2   VIAFID ORCID Logo  ; Gu, Yeong Hyeon 3   VIAFID ORCID Logo  ; Al-antari, Mugahed A 3   VIAFID ORCID Logo 

 Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 44000, Pakistan 
 Department of Computer Science, Sir Syed Case Institute of Technology, Islamabad 45230, Pakistan 
 Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea 
First page
1281
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20754418
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072305258
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.