Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

For visible and Synthetic Aperture Radar (SAR) image fusion, this paper proposes a visible and SAR image fusion algorithm based on a Transformer and a Convolutional Neural Network (CNN). Firstly, in this paper, the Restormer Block is used to extract cross-modal shallow features. Then, we introduce an improved Transformer–CNN Feature Extractor (TCFE) with a two-branch residual structure. This includes a Transformer branch that introduces the Lite Transformer (LT) and DropKey for extracting global features and a CNN branch that introduces the Convolutional Block Attention Module (CBAM) for extracting local features. Finally, the fused image is output based on global features extracted by the Transformer branch and local features extracted by the CNN branch. The experiments show that the algorithm proposed in this paper can effectively achieve the extraction and fusion of global and local features of visible and SAR images, so that high-quality visible and SAR fusion images can be obtained.

Details

Title
A Visible and Synthetic Aperture Radar Image Fusion Algorithm Based on a Transformer and a Convolutional Neural Network
Author
Hu, Liushun; Su, Shaojing; Zuo, Zhen; Junyu Wei  VIAFID ORCID Logo  ; Huang, Siyang; Zhao, Zongqing; Tong, Xiaozhong; Yuan, Shudong
First page
2365
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072318444
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.