Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Modeling in an emerging technology like RRAM devices is one of the pivotal concerns for its development. In the current bibliography, most of the models face difficulties in implementing or simulating unconventional scenarios, particularly when dealing with complex input signals. In addition, circuit simulators like Spice require long running times for high-resolution results because of their internal mathematical implementation. In this work, a fast, simple, robust, and versatile model for RRAM devices built in MATLAB is presented. The proposed model is a recursive and discretized version of the dynamic memdiode model (DMM) for bipolar-type resistive switching devices originally implemented in LTspice. The DMM model basically consists of two coupled equations: one for the current (non-linear current generator) and a second one for the memory state of the device (time-dependent differential equation). This work presents an easy-to-use tool for researchers to reproduce the experimental behavior of their devices and predict the outcome from non-trivial experiments. Three study cases are reported, aimed at capturing different phenomenologies: a frequency effect study, a cycle-to-cycle variability fit, and a stochastic resonance impact analysis.

Details

Title
A Simple, Robust, and Versatile MATLAB Formulation of the Dynamic Memdiode Model for Bipolar-Type Resistive Random Access Memory Devices
Author
Emili Salvador  VIAFID ORCID Logo  ; Rodriguez, Rosana; Miranda, Enrique  VIAFID ORCID Logo 
First page
30
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20799268
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072331723
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.