Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The development of efficient waste valorization strategies has emerged as an important field in the overall efforts for alignment with the environmental goals that have been set by the European Union (EU) Green Deal regarding the development of sustainable circular economy models. Additive manufacturing has emerged as a sustainable method for secondary life product development with the main advantages of it being a form of net-zero waste production and having the ability to successfully transport complex design to actual products finding applications in the industry for rapid prototyping or for tailored products. The insertion of eco-friendly sustainable materials in these processes can lead to significant reduction in material footprints and lower energy demands for the manufacturing process, helping achieve Sustainable Development Goal 12 (SDG12) set by the EU for responsible production and consumption. The aim of this comprehensive review is to state the existing progress regarding the incorporation of sustainable polymeric composite materials in additive manufacturing (AM) processes and identify possible gaps for further research. In this context, a comprehensive presentation of the reacquired materials coming from urban and industrial waste valorization processes and that are used to produce sustainable composites is made. Then, an assessment of the printability and the mechanical response of the constructed composites is made, by taking into consideration some key thermal, rheological and mechanical properties (e.g., viscosity, melting and degradation temperature, tensile and impact strength). Finally, existing life cycle analysis results are presented regarding overall energy demands and environmental footprint during the waste-to-feedstock and the manufacturing processes. A lack of scientific research was observed, regarding the manifestation of novel evaluation techniques such as dynamic mechanical analysis and impact testing. Assessing the dynamic response is vital for evaluating whether these types of composites are adequate for upscaling and use in real life applications.

Details

Title
Mechanical Performance of Recycled 3D Printed Sustainable Polymer-Based Composites: A Literature Review
Author
Ioannis Filippos Kyriakidis 1 ; Kladovasilakis, Nikolaos 2   VIAFID ORCID Logo  ; Pechlivani, Eleftheria Maria 2   VIAFID ORCID Logo  ; Tsongas, Konstantinos 3   VIAFID ORCID Logo 

 Advanced Materials and Manufacturing Technologies Laboratory, Department of Industrial Engineering and Management, School of Engineering, International Hellenic University, 57001 Thessaloniki, Greece; [email protected]; Information Technologies Institute, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece 
 Information Technologies Institute, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece 
 Advanced Materials and Manufacturing Technologies Laboratory, Department of Industrial Engineering and Management, School of Engineering, International Hellenic University, 57001 Thessaloniki, Greece; [email protected] 
First page
215
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2504477X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072343670
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.