Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Composite materials, valued for their adaptability, face challenges associated with degradation over time. Characterising their durability through traditional experimental methods has shown limitations, highlighting the need for accelerated testing and computational modelling to reduce time and costs. This study presents an overview of the current landscape and future prospects of multi-scale modelling for predicting the long-term durability of composite materials under different environmental conditions. These models offer detailed insights into complex degradation phenomena, including hydrolytic, thermo-oxidative, and mechano-chemical processes. Recent research trends indicate a focus on hygromechanical models across various materials, with future directions aiming to explore less-studied environmental factors, integrate multiple stressors, investigate emerging materials, and advance computational techniques for improved predictive capabilities. The importance of the synergistic relationship between experimental testing and modelling is emphasised as essential for a comprehensive understanding of composite material behaviour in diverse environments. Ultimately, multi-scale modelling is seen as a vital contributor to accurate predictions of environmental effects on composite materials, offering valuable insights for sustainable development across industries.

Details

Title
Mechanisms of Component Degradation and Multi-Scale Strategies for Predicting Composite Durability: Present and Future Perspectives
Author
Ferreira Rocha, Paulo Ricardo  VIAFID ORCID Logo  ; Guilherme Fonseca Gonçalves  VIAFID ORCID Logo  ; Guillaume dos Reis  VIAFID ORCID Logo  ; Rui Miranda Guedes  VIAFID ORCID Logo 
First page
204
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2504477X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072343674
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.