Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Limitations in existing anion exchange membranes deter their use in the efficient treatment of industrial wastewater effluent. This work presents an approach to fabricating novel anion-conducting membranes using epoxy resin monomers like hydrophobic or hydrophilic diglycidyl ether and quaternized polyethyleneimine (PEI). Manipulating the diglycidyl ether nature, the quantitative composition of the copolymer and the conditions of quaternization allows control of the physicochemical properties of the membranes, including water uptake (20.0–330%), ion exchange capacity (1.5–3.7 mmol/g), ionic conductivity (0.2–17 mS/cm in the Cl form at 20 °C), potentiostatic transport numbers (75–97%), as well as mechanical properties. A relationship was established between copolymer structure and conductivity/selectivity trade-off. The higher the quaternized polyethyleneimine, diluent fraction, and hydrophilicity of diglycidyl ether, the higher the conductivity and the lower the permselectivity. Hydrophobic diglycidyl ether gives a much better conductivity/selectivity ratio since it provides a lower degree of hydration than hydrophilic diglycidyl ether. Different mesh and non-woven reinforcing materials were also examined. The developed membranes demonstrate good stability in both neutral and acidic environments, and their benchmark characteristics in laboratory electrodialysis cells and batch-mode dialysis experiments are similar to or superior to, commercial membranes such as Neosepta© AMX, FujiFilm© Type1, and Fumasep FAD-PET.

Details

Title
Novel Crosslinked Anion Exchange Membranes Based on Thermally Cured Epoxy Resin: Synthesis, Structure and Mechanical and Ion Transport Properties
Author
Golubenko, Daniil  VIAFID ORCID Logo  ; Farah Ejaz Ahmed  VIAFID ORCID Logo  ; Hilal, Nidal  VIAFID ORCID Logo 
First page
138
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20770375
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072373884
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.