Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The microstructure and mechanical properties of three kinds of low-carbon medium-manganese steels with different Si contents under an intercritical heat treatment process were studied. The results show that the microstructure of the test forged steel is mainly composed of ferrite and pearlite. After 900 °C complete austenitizing quenching + 720 °C intercritical quenching, the microstructure of the test steel is mainly composed of ferrite and martensite. With the increase in Si content, the microstructure becomes finer and more uniform. The microstructure of the test steel after 900 °C complete austenitizing quenching + 720 °C intercritical quenching + 680 °C intercritical tempering is dominated by ferrite and tempered martensite, with a small amount of retained austenite and cementite. As the Si content increases, the boundaries between ferrite and tempered martensite become more clear. The tensile strength and hardness of the test steel increase with the increase in Si content, while the elongation first increases and then decreases; the comprehensive performance of the test steel is the best when the Si content is 0.685 wt. %, with a tensile strength of 726 MPa, a yield ratio of only 0.65, the highest elongation of 30.5%, and the highest strong plastic product of 22,143 MPa.%.

Details

Title
Effect of Si Content on Microstructure and Properties of Low-Carbon Medium-Manganese Steel after Intercritical Heat Treatment
Author
Hu, Zihan; Fu, Hanguang  VIAFID ORCID Logo 
First page
675
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072545097
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.