Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study addresses the challenges of setting segmentation points in the membership function and determining appropriate weights for different types of information within a fuzzy logic algorithm for map matching. We use linear fitting to derive an empirical formula for setting segmentation points for the information membership function. Furthermore, we evaluate the effects of various weights for direction and distance information in parallel and cross-road scenarios. The research identified the optimal distance that achieves the highest matching accuracy and provided insights into how the weights of connection, direction, and distance information affect this accuracy. The simulations confirmed the critical importance of precise segmentation point settings and weight determinations in enhancing the accuracy of fuzzy logic algorithms for map matching. The results underscore the potency of our tailored parameter-setting strategy and contribute to knowledge of symmetry, offering practical insights for implementing fuzzy logic in map matching with a particular emphasis on the principle of symmetry in algorithm design and information processing.

Details

Title
Symmetry-Enhanced Fuzzy Logic Analysis in Parallel and Cross-Road Scenarios: Optimizing Direction and Distance Weights for Map Matching
Author
Zhou, Weicheng 1 ; Ge, Huilin 1   VIAFID ORCID Logo  ; Muhammad Awais Ashraf 2   VIAFID ORCID Logo 

 Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212100, China 
 Department of Information Engineering, Chang’an University, Xi’an 710000, China 
First page
683
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072691254
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.