Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, we consider the influence of a nonlinear contact rate caused by multiple contacts in classical SIR model. In this paper, we unversal unfolding a nilpotent cusp singularity in such systems through normal form theory, we reveal that the system undergoes a Bogdanov-Takens bifurcation with codimension 2. During the bifurcation process, numerous lower codimension bifurcations may emerge simultaneously, such as saddle-node and Hopf bifurcations with codimension 1. Finally, employing the Matcont and Phase Plane software, we construct bifurcation diagrams and topological phase portraits. Additionally, we emphasize the role of symmetry in our analysis. By considering the inherent symmetries in the system, we provide a more comprehensive understanding of the dynamical behavior. Our findings suggest that if this occurrence rate is applied to the SIR model, it would yield different dynamical phenomena compared to those obtained by reducing a 3-dimensional dynamical model to a planar system by neglecting the disease mortality rate, which results in a stable nilpotent cusp singularity with codimension 2. We found that in SIR models with the same occurrence rate, both stable and unstable Bogdanov-Takens bifurcations occur, meaning both stable and unstable limit cycles appear in this system.

Details

Title
Bogdanov–Takens Bifurcation of Kermack–McKendrick Model with Nonlinear Contact Rates Caused by Multiple Exposures
Author
Li, Jun 1 ; Ma, Mingju 2 

 School of Mathmatics and Statistics, Xidian University, Xi’an 710071, China 
 School of Science, Xi’an Polytechnic University, Xi’an 710048, China 
First page
688
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072694201
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.