Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Semantic segmentation of remote sensing imagery stands as a fundamental task within the domains of both remote sensing and computer vision. Its objective is to generate a comprehensive pixel-wise segmentation map of an image, assigning a specific label to each pixel. This facilitates in-depth analysis and comprehension of the Earth’s surface. In this paper, we propose an approach for enhancing semantic segmentation performance by employing an ensemble of U-Net models with three different backbone networks: Multi-Axis Vision Transformer, ConvFormer, and EfficientNet. The final segmentation maps are generated through a geometric mean ensemble method, leveraging the diverse representations learned by each backbone network. The effectiveness of the base U-Net models and the proposed ensemble is evaluated on multiple datasets commonly used for semantic segmentation tasks in remote sensing imagery, including LandCover.ai, LoveDA, INRIA, UAVid, and ISPRS Potsdam datasets. Our experimental results demonstrate that the proposed approach achieves state-of-the-art performance, showcasing its effectiveness and robustness in accurately capturing the semantic information embedded within remote sensing images.

Details

Title
U-Net Ensemble for Enhanced Semantic Segmentation in Remote Sensing Imagery
Author
Dimitrovski, Ivica  VIAFID ORCID Logo  ; Spasev, Vlatko; Loshkovska, Suzana; Kitanovski, Ivan  VIAFID ORCID Logo 
First page
2077
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072707615
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.